L-Histidine Inhibits Biofilm Formation and FLO11-Associated Phenotypes in Saccharomyces cerevisiae Flor Yeasts
نویسندگان
چکیده
Flor yeasts of Saccharomyces cerevisiae have an innate diversity of Flo11p which codes for a highly hydrophobic and anionic cell-wall glycoprotein with a fundamental role in biofilm formation. In this study, 380 nitrogen compounds were administered to three S. cerevisiae flor strains handling Flo11p alleles with different expression levels. S. cerevisiae strain S288c was used as the reference strain as it cannot produce Flo11p. The flor strains generally metabolized amino acids and dipeptides as the sole nitrogen source, although with some exceptions regarding L-histidine and histidine containing dipeptides. L-histidine completely inhibited growth and its effect on viability was inversely related to Flo11p expression. Accordingly, L-histidine did not affect the viability of the Δflo11 and S288c strains. Also, L-histidine dramatically decreased air-liquid biofilm formation and adhesion to polystyrene of the flor yeasts with no effect on the transcription level of the Flo11p gene. Moreover, L-histidine modified the chitin and glycans content on the cell-wall of flor yeasts. These findings reveal a novel biological activity of L-histidine in controlling the multicellular behavior of yeasts [corrected].
منابع مشابه
Flor yeasts of Saccharomyces cerevisiae--their ecology, genetics and metabolism.
The aging of certain white wines is dependent on the presence of yeast strains that develop a biofilm on the wine surface after the alcoholic fermentation. These strains belong to the genus Saccharomyces and are called flor yeasts. These strains possess distinctive characteristics compared with Saccharomyces cerevisiae fermenting strain. The most important one is their capacity to form a biofil...
متن کاملChromatin modulation at the FLO11 promoter of Saccharomyces cerevisiae by HDAC and Swi/Snf complexes.
Cell adhesion and biofilm formation are critical processes in the pathogenicity of fungi and are mediated through a family of adhesin proteins conserved throughout yeasts and fungi. In Saccharomyces cerevisiae, Flo11 is the main adhesin involved in cell adhesion and biofilm formation, making the study of its function and regulation in this nonpathogenic budding yeast highly relevant. The S. cer...
متن کاملIdentification of novel activation mechanisms for FLO11 regulation in Saccharomyces cerevisiae.
Adhesins play a central role in the cellular response of eukaryotic microorganisms to their host environment. In pathogens such as Candida spp. and other fungi, adhesins are responsible for adherence to mammalian tissues, and in Saccharomyces spp. yeasts also confer adherence to solid surfaces and to other yeast cells. The analysis of FLO11, the main adhesin identified in Saccharomyces cerevisi...
متن کاملAdaptive evolution by mutations in the FLO11 gene.
In nature, Saccharomyces yeasts manifest a number of adaptive responses to overcome adverse environments such as filamentation, invasive growth, flocculation and adherence to solid surfaces. Certain Saccharomyces wild yeasts, namely "flor yeasts," have also acquired the ability to form a buoyant biofilm at the broth surface. Here we report that mutations in a single gene, identified as FLO11, s...
متن کاملDifferential Proteome Analysis of a Flor Yeast Strain under Biofilm Formation
Several Saccharomyces cerevisiae strains (flor yeasts) form a biofilm (flor velum) on the surface of Sherry wines after fermentation, when glucose is depleted. This flor velum is fundamental to biological aging of these particular wines. In this study, we identify abundant proteins in the formation of the biofilm of an industrial flor yeast strain. A database search to enrich flor yeast "biolog...
متن کامل